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J. Phys. A: Math. Gen. 19 (1986) 1583-1587. Printed in Great Britain 

Optimal choice of a parameter for the operator method of the 
solution of the Schrodinger equation 

Chan Za An, I D Feranchuk, L I Komarov and L S Nakhamchik 
Department of Physics, Byelomssian State University, Minsk-80, USSR 

Received 5 July 1985 

Abstract. The rate of convergence of the operator method iterative series as a function of 
the variational parameter is investigated numerically. The optimal method of calculation 
of this parameter is proposed. 

The operator method (OM) of the approximate solution of the Schrodinter equation 
was introduced by Feranchuk and Komarov (1982, 1984). This method gives a uni- 
formly convergent series for eigenvalues and eigenstates of the Hamiltonian for arbitrary 
values of its parameters. Casewell (1979) used a similar approach but his method of 
calculation of the perturbation series was essentially based on the characteristic features 
of the anharmonic oscillator. 

We recall that, according to the OM, the Hamiltonian &(:, b, A )  of the arbitrary 
system must be put in the second quantised form through the canonical transformation 

x ^ =  [1/(2w)"2](a++a) $ = i ( w / 2 ) ' / 2 ( a + - a )  (1) 

with arbitrary parameter w. Here 2 and p̂  are the coordinate and momentum operators, 
a and ai are the annihilation and creation operators respectively and A is the Hamil- 
tonian paymeter. 

Then X ( a ,  a+, A )  is divided into two parts 

&= &o(q 6, A ) +  c ( w ,  a, a+, A )  (2) 

where &o(w, 6, A )  contains all the terms which commute with the particle number 
operator 6 = a+a and its eigenvalues and eigenstate? are easily calculated. The per- 
turbation theory (PT) with respect to the operator V ( w )  leads to rapidly convergent 
series for all eigenvalues E, and any coupling constant A, if the parameter w is chosen 
in an optimal way. 

Originally, we found w = ono from the condition 

a E (R)/aw = o (3) 
where E',O'(w, A )  is the eigenvalue of the Hamiltonian %'o. This condition follows from 
the obvious demand that the accurate eigenvalue E,  of the Hamiltonian (2) could not 
depend on the artificial parameter w,  that is 

aE,/aw = o. (4) 
Equation (4) becomes equation (3) in the zeroth-order approximation with respect to 
the operator fi 
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Femandez et al (1984) have recently found one of the most accurate results for 
eigenvalues of the quantum anharmonic oscillator (QAO) by means of the OM. Their 
numerical calculations have shown that equation (3) leads to a good approximation 
for E, only in the lowest orders of PT, but calculation of E, with high accuracy demands 
that we choose the optimal value w = o n b  # ono. These authors found w,b by means 
of a numerical examination of various values of w from some interval. It is clear that 
this method is not sufficiently effective. 

In the present paper we shall investigate numerically the convergence of the PT 
series for different w and shall introduce the regular method of calculation of w,,b for 
any order of PT. We shall carry our specific calculations for the QAO problem which 
is described by the following Hamiltonian 

&=go+ Q 
9 0 = ~ ( w + 3 2 t i + l ) + - i ( l + 2 t i + 2 t i 2 )  3 A  

4 4 0  

A + a') +- [6(  a+'+ a') + a+4+ a4+ 4( a+a3 + at3a)]. 
4w2 

In the representation of the eigenfunctions of the operator 

the non-zeroth matrix elements of the operators go and 
i l n )  = nln) , n =o, 1 , 2 , .  . . 

are 

W ( W '  - 1 )  - A (4n +6)  
4w2 

(n + 21 Qln) = (n lo in  + 2) = [(n + l)(n + 2)11/' 

(n + 41 Qln) = (n( Qln +4) = 

Let us find the accuracy eigenvector I$,,) and eigenvalue E,, of the Hamiltonian (2) 

&I +n) = En I +n) 

in the following form 

with the normalisation condition 

(nl$n)= 1 c,, = 1. 

c$) = 8, Eho) = ZOn ( 6 )  

E"'= c c$-"(nlQ/j) s a 2  (7)  

Then the OM gives in the zeroth approximation 

and the perturbation series with respect to the operator ? ( U )  leads to the following 
recursive equations (Fernandez er a1 1984) 

j # n  
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0.815- 
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where 

io  I 

I 
I 

m m 

c,,j= C $ ' ( w )  E,,= E t ) ( w )  E'," = 0. 
s = 1  s = o  

(9) 

The parameter w is still arbitrary, but in accordance with Feranchuk and Komarov 
(1984) its optimal value w,,b corresponds to a partial summation of PT series and 
essentially affects the rate of convergence of the series (9). In order to introduce the 
regular method of the calculation of w,,b let us consider the following partial sums 

m 

S(,'")(o)= 1 E',"'(@) m = 0 ,  1,2. .  . 
s = o  

as functions of w. This proves (see figure 1) that S( , " ) (w)  for the QAO problem becomes 
a constant E,,, when m + m .  This limit transition is very peculiar because the value 
S(,"') - E,, is an oscillating function of w but an amplitude of the oscillation vanishes. 
The positions of extrema of the function S(,")(o) essentially change for different m 
and condition (4) becomes ambiguous. At the same time there are values of the 
parameter w such that S(,'")(w) coincides with its limit value E,,. This affirmation is 
correct for m 3 2, if n = 0, 1, and for m 2 0, if n 3 2. This permits us to propose the 
following numerical method of the regular calculation of the optimal value wnb: let us 

I 
I 
I S," 0.807 

W 

l b )  
e------- 4 

w -  

E2 

2.5 31) 

W 

3.5 

Figure 1. Dependence of the partial sums of OM perturbation series for the QAO problem 
on the parameter w :  (a )  the ground state ( n  = 0); ( b )  the second excited state ( n  = 2). 
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determine it as a root of the equation 

It is obvious that the accurate value En is unknown beforehand and in reality o n b  

is calculated as the following limit value 

where for every eigenvalue its own parameter w $ )  is that root of the equation 
m 

E?)(&))  = 0 

E y ( w y )  = 0 if n 3 2  

if n = 0, 1 
s=3 

m (13)  

s=2 

which is nearest to the value uno. Here wno is defined by equation (3) .  
Equation (13)  gives an unambiguous numerical method for the calculation of o& 

and the sequence U::) converges to w n b  sufficiently rapidly (see figure 2). This procedure 

Figure 2. Successive values of the optimal parameter U$’ .  

acquires a clear meaning if you consider the graphical presentation of the perturbation 
series introduced by Feranchuk and Komarov (1984) for the QAO problem. Indeed, 
if condition (11)  is fulfilled for every iteration then the recursive equations (7)  are 
essentially simplified: 

Oj O n  n k  (jIQIk) n 3 2 .  (14)  C $ . L  -(X - %  ) - I  1 c ( s - 1 )  

k z j  

It is easy to make sure that this series corresponds to bound diagrams only, i.e. 
the choice w = w n b  leads to the disappearance of the unbound diagrams. 

Figure 3 shows the successive terms of the iterative series defined by equations (9), 
(13) and (14) for the eigenvalues of the QAO problem. Their decrease as a function 
of s signifies that this series rapidly converges as the geometric progression with 
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Figure 3. Successive terms of OM perturbation series with A optimal, wOb and B, fixed w. 
A = 1. 

denominator q - Q. At the same time the rate of convergence of the OM series with 
any fixed w, which was considered by Fernandez et a1 (1984), is essentially smaller 
(4-4). Several eigenvalues of the QAO problem are compared with their accurate 
values in table 1. 

Table 1. Comparison of the eigenvalues for the QAO problem, calculated by means of the 
operator method, with its accurate values E,. 

A Eo ELo’+Ef ’ (wLY)  Eho’+ EL”(wA~’) wL2 

1 0.80377065 0.803 770 79 0.803 770 71 2.517 0107 
50 2.499 708 77 2.499 710 45 2.499 709 57 8.770 4769 

E2 E io’( w $Y) E io]( “$92) w i’d 

1 5.179291 69 5.179 293 28 5.179 292 02 3.011 8979 
50 17.436 992 1 17.437 008 2 17.436 995 8 10.712 937 

We realise that the modification of the OM, described in this paper, is required for 
rigorous mathematical reasons, and it can still be considered as a practical calculation 
algorithm. However, we have tried it for several examples, besides the QAO problem, 
and it proves very efficient for calculation of the high-order corrections for eigenvalues 
by means of the operator method. 
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